

CONTROL MODES

• Indexer, Point-to-Point, PVT

Camming, Gearing, Position, Velocity, Torque

COMMAND INTERFACE

- CANopen
- ASCII and discrete I/O
- Stepper commands
- ±10 Vdc analog position/velocity/torque *
- PWM velocity/torque command
- Master encoder (Gearing/Camming)

COMMUNICATIONS

- CANopen
- RS-232

FEEDBACK

- Digital Quad A/B encoder
- Secondary encoder
- Brushless resolver (-R option)
- Digital Halls

I/O - DIGITAL

• 10 inputs, 2 outputs

DIMENSIONS: MM [IN]

• 102 x 69 x 25 [4.0 x 2.7 x 1.0]

* Available on RoHS versions

Model	Vdc	Ic	Ip
ACM-055-18	20 - 55	6	18
ACM-090-09	20 - 90	3	9
ACM-090-24	20 - 90	12	24
ACM-090-60	20 - 90	30	60
ACM-180-09	20 - 180	3	9
ACM-180-18	20 - 180	6	18
ACM-180-20	20 - 180	10	20

Add -R to part numbers above for resolver feedback

DESCRIPTION

Accelnet is a digital servo drive that combines CANopen networking with 100% digital control of brush or brushless motors in a pc board mounting package with power options to 10 Adc continuous and 20 Adc peak from 20 Vdc to 180 Vdc power supplies.

RoHS compliance is now standard on all models and with this a ± 10 Vdc analog input has been added for position/velocity/torque control. The input takes the place of signal ground pins on non RoHS models so that RoHS types can be installed in place of non RoHS types with no change in function.

Accelnet operates as a Motion Control Device using the DSP-402 protocol under the CANopen DS-301 V4.01 (EN 50325-4) application layer. DSP-402 modes supported include Interpolated Position (PVT), Profile Position, Profile Velocity, Profile Torque, and Homing.

Ten logic inputs are configurable as CAN address bits, enables, limit & home switches, motor temperature switch, stepper/encoder pulses, and reset. There are two logic outputs for reporting drive status, or driving a motor brake.

In addition to CANopen motion commands, *Accelnet* can operate using incremental position commands from step-motor controllers in Pls/Dir or CW/CCW format, as well as A/B quadrature commands from a master-encoder which can drive cam tables or be geared to ratio the drive position to that of the master-encoder.

Drive commissioning is facilitated by CME 2[™] software operating under Windows® communicating with *Accelnet* via an RS-232 link. Auto-tuning algorithms in CME 2[™] slash set up times for fast system commissioning by automating motor phasing, and currentloop tuning. A powerful oscilloscope and waveform generator display drive performance for fine tuning. Drive configurations are saved in non-volatile flash memory. OEM's can inventory one part, and configure drives on-site to each axis in a machine.

Space-vector modulation delivers higher motor speeds and lower motor power dissipation than conventional sine-pwm modulation. Carrier-cancellation modulation all but eliminates motor ripple current and dissipation at a standstill. Current-loop sampling is at 15 kHz, position and velocity loops at 3 kHz and PWM ripple at 30 kHz.

All drive circuits are DC coupled and operate from unregulated transformer-isolated linear DC power supplies, or regulated switching power supplies.

The PC board mounting package is suitable for high density, multiaxis installations in equipment where space is at a premium, and wiring must be minimized.

copley (

Accelnet Module DIGITAL SERVO DRIVE for BRUSHLESS/BRUSH MOTORS ACM

GENERAL SPECIFICATIONS

MODEL							$C. + HV = HV_{ma}$	х
MODEL	ACM-055-18	ACM-090-09	ACM-090-24	ACM-090-60	ACM-180-09	ACM-180-18	ACM-180-20	
OUTPUT POWER Peak Current	18 (12.7)	9 (6.34)	24 (17.0)	60 (42.4)	9 (6.34)	18 (12.7)	20 (14.14)	Adc (Arms)
Peak time	10 (12.7)	9 (0.54) 1	24 (17.0)	1	9 (0.54) 1	10 (12.7)	20 (14.14)	Sec
Continuous current	6 (4.24)	3 (2.1)	12 (8.5)	30 (21.2)	3 (2.1)	6 (4.24)	10 (7.1)	Adc (Arms)
Peak Output Power	Ò.99 ´	0.81	2.16	5.4	1.62	3.24	3.6	kW
Continuous Output Powe	er 0.33	0.27	1.08	2.7	0.54	1.08	1.8	kW
NPUT POWER								
HVmin to HVmax	+20 to +55	+20 to +90	+20 to +90	+20 to +90		+20 to +180		Vdc
Ipeak	18 6	9 3	24 12	60 30	9 3	18 6	20 10	Adc Adc
Icont Aux HV +	o ⊦20 to HVma		2.5 W max	30				when +HV is removed
WM OUTPUTS	20 00 1101110	~	215 11 1102		option		power input i	
Type PWM ripple frequen		FET 3-phase	inverter, 15		eighted PWM) kHz	carrier, spac	e-vector modu	Ilation
ANDWIDTH								
Current loop, small	signal						ing & load ind	uctance
HV Compensation Current loop update	o rato			jes in HV do z (66.7 μs)	not affect bai	nawlath		
Position & Velocity		rate		(333 µs)				
COMMAND INPUTS	and the second			(000 p.0)				
CANopen bus			Opera	ting Modes		Profile Po	sition, Profile	Velocity, Profile Torque
·				-		Interpola	ted Position (F	VT), Homing
Digital position refe	erence			r, CW/CCW				MHz maximum rate)
Digital targua & val	lacity roforon	co (Noto 1)	Quad	A/B Encoder Polarity				/sec after quadrature)
Digital torque & vel	ocity referen	ce (Note I)	PWM, PWM	Polarity			~100%, Polar	no polarity signal required
				requency rar	nae		nimum, 100 k	
			PWM r	ninimum pul	se width	220 ns	,	
Analog torque/velo	city/position		±10 V	dc, 5 k Ω diffe	erential input	impedance (only on RoHS	models with green leaf on lab
IGITAL INPUTS (NOTE 1)								-
Number	1	0						
All inputs								I-ups to +5 Vdc
		C time-const						
Logic levels		ctive level of in-LO < 1.35				N2~10] are s	selectable	
Enable [IN1]	1	dedicated in	put for drive	enable, 10 k	O null-un. 33	30 us RC filte	r, 24 Vdc max	
GP [IN2,3,4]	3	General Pur	ose inputs,	$10 \text{ k}\Omega \text{ pull-ul}$	os, 330 us R	C filter (33 us	for [IN4]), 24	ł Vdc max
Motemp [IN5]	1	General Pur	oose input w	ith, 4.99 kΩ	pull-up, 330	µs RC filter, 2	4 Vdc max	
HS [IN6,7,8,9,10]	5	High-Speed	inputs, 10 k	Ω pull-ups, w	ith 100 ns R	C filter, 12 Vo	c max	
Number	2							h diada
	C	urrent-sinkin			tput with 1 k	Ω pull-up to \cdot	+5 Vdc througl	h diode
Number Type	C 1	Current-sinkin Adc sink ma	x, +30 Vdc r	nax	tput with 1 k	Ω pull-up to \cdot	⊦5 Vdc througl	h diode
Number	C 1 P	Current-sinkin Adc sink ma rogrammable	x, +30 Vdc r with CME 2	nax ™			-	h diode when output is active
Number Type Functions Active Level	C 1 P P	Current-sinkin Adc sink ma rogrammable	x, +30 Vdc r with CME 2	nax ™			-	
Number Type Functions Active Level	C 1 P P	Current-sinkin Adc sink ma rogrammable	x, +30 Vdc r e with <i>CME 2</i> e to either HI	nax ™			-	
Number Type Functions Active Level RS-232 COMMUNICATION PO	C 1 P P RT R	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno	x, +30 Vdc r e with <i>CME 2</i> e to either HI	max ™ I (off, pull-up	to +5 Vdc) o	or LO (on, cui	-	when output is active
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals	C 1 P P RT R F	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno	x, +30 Vdc r e with <i>CME 2</i> e to either HI	max ™ I (off, pull-up	to +5 Vdc) o	or LO (on, cui	rent-sinking)	when output is active
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals	C 1 P P RT R F F PORT C	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se XANH, CANL,	x, +30 Vdc r e with <i>CME 2</i> e to either HI d erial commur Gnd. 1 Mbit/	max ™ i (off, pull-up nication port sec maximur	to +5 Vdc) c for drive setu n.	or LO (on, cui	rent-sinking)	when output is active
Number Type Functions Active Level S-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol	C 1 P P RT R F PORT C	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se CANH, CANL, CANOpen Appl	x, +30 Vdc r with <i>CME 2</i> to either HI erial commur Gnd. 1 Mbit/ ication Layer	max ™ icoff, pull-up nication port sec maximur r DS-301 V4.	to +5 Vdc) o for drive setu n. 01	pr LO (on, cu	rent-sinking)	when output is active
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device	C 1 P P RT R F PORT C	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se XANH, CANL,	x, +30 Vdc r with <i>CME 2</i> to either HI erial commur Gnd. 1 Mbit/ ication Layer	max ™ icoff, pull-up nication port sec maximur r DS-301 V4.	to +5 Vdc) o for drive setu n. 01	pr LO (on, cu	rent-sinking)	when output is active
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device	C 1 P P RT R F PORT C C D	Current-sinkin Adc sink ma rogrammable rogrammable (xD, TxD, Gno ull-duplex, se (XANH, CANL, (XANopen Appl (SP-402 Devi	x, +30 Vdc r with <i>CME 2</i> to either HI erial commur Gnd. 1 Mbit/ ication Layer ce Profile for	max ™ icoff, pull-up nication port sec maximur r DS-301 V4. Drives and N	to +5 Vdc) of for drive setu n. 01 4otion Contro	or LO (on, cu op and contro	rent-sinking) v	when output is active 5,200 Baud
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device MOTOR CONNECTIONS Motor U,V,W	RT R PORT C D	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se CANH, CANL, CANopen Appl SP-402 Devi Drive outputs	x, +30 Vdc r with <i>CME 2</i> to either HI erial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b	max ™ icoff, pull-up nication port sec maximur r DS-301 V4. Drives and N prushless mol	to +5 Vdc) of for drive setu n. 01 Aotion Contro	or LO (on, cur op and contro of	rrent-sinking) v I, 9,600 to 11! d (DC brush m	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device MOTOR CONNECTIONS Motor U,V,W Encoder	RT R PORT C Q Q	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se ANH, CANL, ANOpen Appl pSP-402 Devi Prive outputs Quadrature er	x, +30 Vdc r with <i>CME 2</i> to either HI crial commun Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b	max ™ hication port sec maximur r DS-301 V4. Drives and N prushless mol ential output:	to +5 Vdc) of for drive setu n. 01 Aotion Contro	or LO (on, cur op and contro of	rrent-sinking) v I, 9,600 to 11! d (DC brush m	when output is active 5,200 Baud
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device MOTOR CONNECTIONS Motor U,V,W Encoder Resolver	RT RT PORT CC D Q R	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gnu ull-duplex, se XANH, CANL, XANopen Appl SP-402 Devi Drive outputs Quadrature er 1, R2, S3, S	x, +30 Vdc r with <i>CME 2</i> to either HI crial commun Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b coder, differ 1, S2, S4 (-R	max ™ hication port sec maximur r DS-301 V4. Drives and N prushless mol ential output:	to +5 Vdc) of for drive setu n. 01 Aotion Contro	or LO (on, cur op and contro of	rrent-sinking) v I, 9,600 to 11! d (DC brush m	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level S-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device 10TOR CONNECTIONS Motor U,V,W Encoder	RT RT PORT C D Q Q Q R H	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se ANH, CANL, ANOpen Appl pSP-402 Devi Prive outputs Quadrature er	x, +30 Vdc r with <i>CME 2</i> to either HI erial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b coder, differ L, S2, S4 (-R V,W)	max ™ icoff, pull-up hication port sec maximur r DS-301 V4. Drives and N prushless mol ential outputs coption)	to +5 Vdc) of for drive setu n. 01 Aotion Contro	or LO (on, cur op and contro of	rrent-sinking) v I, 9,600 to 11! d (DC brush m	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device 40TOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp	RT RT PORT C D Q Q Q R H	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se XANH, CANL, ANOpen Appl SP-402 Devi Drive outputs Quadrature er 1, R2, S3, S Iall signals (L	x, +30 Vdc r with <i>CME 2</i> to either HI erial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b coder, differ L, S2, S4 (-R V,W)	max ™ icoff, pull-up hication port sec maximur r DS-301 V4. Drives and N prushless mol ential outputs coption)	to +5 Vdc) of for drive setu n. 01 Aotion Contro	or LO (on, cur op and contro of	rrent-sinking) v I, 9,600 to 11! d (DC brush m	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device MOTOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp	RT RT PORT C D Q Q Q R H	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se CANH, CANL, ANopen Appl SP-402 Devi Disp-402 Devi Dive outputs Quadrature er 1, R2, S3, S Jall signals (L Iotor tempera	x, +30 Vdc r with <i>CME 2</i> to either HI crial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase to ccoder, diffen L, S2, S4 (-R ,V,W) ature sensor	max ™ icoff, pull-up hication port sec maximur r DS-301 V4. Drives and N prushless mol ential outputs coption)	to +5 Vdc) o for drive setu n. 01 dotion Contro tor, Wye or d s (A,/A,B,/B,2	or LO (on, cu or LO (on, cu of and contro of elta connecte X,/X), 5 Mline	t, 9,600 to 11 l, 9,600 to 11 d (DC brush mes/sec (20 Mco	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION P Signals Protocol Device 40TOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp RESOLVER Type Resolution	RT RT PORT C D Q Q Q R H	Current-sinkin Adc sink ma rogrammable xD, TxD, Gnu ull-duplex, se ANH, CANL, ANOpen Appl pSP-402 Devi prive outputs Quadrature er 1, R2, S3, S all signals (U lotor tempera Brushles: 14 bits (e	x, +30 Vdc r with <i>CME 2</i> to either HI d erial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase to coder, diffen L, S2, S4 (-R V,VW) ature sensor	max ™ (off, pull-up nication port sec maximur r DS-301 V4. Drives and N prushless mol ential output: coption) or switch	to +5 Vdc) of for drive setu n. 01 dotion Contro tor, Wye or d s (A,/A,B,/B,) 1 programma	or LO (on, cu op and contro ol elta connecte X,/X), 5 Mline	t, 9,600 to 11 l, 9,600 to 11 d (DC brush mes/sec (20 Mco	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device 40TOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp RESOLVER Type Resolution Reference frequency	RT RT PORT C D Q Q Q R H	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gnu ull-duplex, se XANH, CANL, XANopen Appl SP-402 Devi Drive outputs Uadrature er 1, R2, S3, S Iall signals (U Iotor tempera Brushles: 14 bits (c 7.5 kHz	x, +30 Vdc r with <i>CME 2</i> to either HI erial commun Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b coder, diffen 1, S2, S4 (-R l,V,W) ature sensor s, single-spece equivalent to	max ™ (off, pull-up hication port : sec maximur r DS-301 V4. Drives and N prushless mod ential output: coption) or switch ed, 1:1 to 2: a 4096 line	to +5 Vdc) of for drive setu n. 01 dotion Contro tor, Wye or do s (A,/A,B,/B,/ s (A,/A,B,/B,/ 1 programma quadrature e	br LO (on, cu p and contro bl elta connecte X,/X), 5 Mline ble transform ncoder)	d (DC brush m s/sec (20 Mco	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device MOTOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp RESOLVER Type Resolution Reference frequency Reference voltage	C 1 P P RT R F PORT C D D Q Q R H H M	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se caNH, CANL, ANopen Appl SP-402 Devi Drive outputs Data and a construction SP-402 Devi Drive outputs Drive outputs Juadrature er 1, R2, S3, Si Juall signals (U lotor tempera Brushles: 14 bits (d 7.5 kHz 2.8 Vrms	x, +30 Vdc r with <i>CME 2</i> to either HI erial commun Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b coder, diffen 1, S2, S4 (-R l,V,W) ature sensor s, single-spece equivalent to	max ™ (off, pull-up nication port sec maximur DS-301 V4. Drives and N prushless molential output: option) or switch ed, 1:1 to 2:	to +5 Vdc) of for drive setu n. 01 dotion Contro tor, Wye or do s (A,/A,B,/B,/ s (A,/A,B,/B,/ 1 programma quadrature e	br LO (on, cu p and contro bl elta connecte X,/X), 5 Mline ble transform ncoder)	d (DC brush m s/sec (20 Mco	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION P Signals Protocol Device COTOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp RESOLVER Type Resolution Reference frequency Reference voltage Reference maximum of	C 1 P P RT R F PORT C D D Q Q R H H M	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se CANH, CANL, CANopen Appl SP-402 Devi Drive outputs Quadrature er 1, R2, S3, S2 Lall signals (L lotor tempera Brushless 14 bits (c 7.5 kHz 2.8 Vrms 100 mA	x, +30 Vdc r with <i>CME 2</i> to either HI erial commun Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b coder, diffen 1, S2, S4 (-R l,V,W) ature sensor s, single-spece equivalent to	max ™ (off, pull-up hication port : sec maximur r DS-301 V4. Drives and N prushless mod ential output: coption) or switch ed, 1:1 to 2: a 4096 line	to +5 Vdc) of for drive setu n. 01 dotion Contro tor, Wye or do s (A,/A,B,/B,/ s (A,/A,B,/B,/ 1 programma quadrature e	br LO (on, cu p and contro bl elta connecte X,/X), 5 Mline ble transform ncoder)	d (DC brush m s/sec (20 Mco	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device COTOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp RESOLVER Type Resolution Reference frequency Reference voltage Reference maximum of Maximum RPM	C 1 P P RT R F PORT C D D Q Q R H H M	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se caNH, CANL, ANopen Appl SP-402 Devi Drive outputs Data and a construction SP-402 Devi Drive outputs Drive outputs Juadrature er 1, R2, S3, Si Juall signals (U lotor tempera Brushles: 14 bits (d 7.5 kHz 2.8 Vrms	x, +30 Vdc r with <i>CME 2</i> to either HI erial commun Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b coder, diffen 1, S2, S4 (-R l,V,W) ature sensor s, single-spece equivalent to	max ™ (off, pull-up hication port : sec maximur r DS-301 V4. Drives and N prushless mod ential output: coption) or switch ed, 1:1 to 2: a 4096 line	to +5 Vdc) of for drive setu n. 01 dotion Contro tor, Wye or do s (A,/A,B,/B,/ s (A,/A,B,/B,/ 1 programma quadrature e	br LO (on, cu p and contro bl elta connecte X,/X), 5 Mline ble transform ncoder)	d (DC brush m s/sec (20 Mco	when output is active 5,200 Baud notor use outputs U & V)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION P Signals Protocol Device COTOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp RESOLVER Type Resolution Reference frequency Reference frequency Reference maximum of Maximum RPM	C 1 P P RT R F PORT C D Q Q R R H H M	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se CANH, CANL, ANopen Appl SP-402 Devi Drive outputs Quadrature er 1, R2, S3, S2 lall signals (L lotor tempera Brushless 14 bits (c 7.5 kHz 2.8 Vrms 100 mA 10,000+	x, +30 Vdc r with <i>CME 2</i> to either HI d erial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase t iccoder, diffen L, S2, S4 (-R V,VW) ature sensor s, single-sper equivalent to a, auto-adjus	max ™ (off, pull-up hication port sec maximur > DS-301 V4. > Drives and N prushless molential outputs > option) or switch ed, 1:1 to 2: > a 4096 line table by the o	to +5 Vdc) of for drive setu n. 01 dotion Contro tor, Wye or d s (A,/A,B,/B,) 1 programma quadrature e drive to maxi	or LO (on, cu up and contro ol elta connecte X,/X), 5 Mline able transform ncoder) mize feedbac	d (DC brush messiver) d (DC brush messiver)	when output is active 5,200 Baud notor use outputs U & V) punt/sec after quadrature)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION P Signals Protocol Device MOTOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp RESOLVER Type Resolution Reference frequency Reference frequency Reference maximum of Maximum RPM PROTECTIONS HV Overvoltage	C I P P RT R F PORT C D D Q Q R R H H M	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se CANH, CANL, ANopen Appl SP-402 Devi Disp-402 Devi	x, +30 Vdc r with <i>CME 2</i> to either HI d erial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase to coder, diffen L, S2, S4 (-R ,V,W) ature sensor s, single-spece equivalent to a, auto-adjus 56 Vdc	max ™ (off, pull-up hication port sec maximur DS-301 V4. Drives and N prushless molential outputs or switch ed, 1:1 to 2: a 4096 line table by the outputs Drive out	to +5 Vdc) of for drive setu n. 01 dotion Contro tor, Wye or do s (A,/A,B,/B,) 1 programma quadrature e drive to maxi	or LO (on, cu op and contro ol elta connecte X,/X), 5 Mline able transform ncoder) mize feedbac	d (DC brush m sc/sec (20 Mco nation ratio	when output is active 5,200 Baud notor use outputs U & V)
Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device MOTOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp RESOLVER Type Reference voltage Reference maximum of Maximum RPM PROTECTIONS HV Overvoltage HV Undervoltage	C 1 P P RT R F F PORT C C D Q Q R H H M	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gnu ull-duplex, se ANH, CANL, ANOpen Appl pSP-402 Devi prive outputs Duadrature er 1, R2, S3, S: Lall signals (U lotor tempera Brushless 14 bits (6 7.5 kHz 2.8 Vrms 100 mA 10,000+ -185, +91, +	x, +30 Vdc r with <i>CME 2</i> to either HI d erial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b iccoder, diffen L, S2, S4 (-R ,V,W) ature sensor s, single-sper equivalent to s, auto-adjus	max ™ (off, pull-up nication port sec maximur r DS-301 V4. Drives and N prushless molential output: coption) or switch ed, 1:1 to 2: a 4096 line table by the output Drive output	to +5 Vdc) of for drive setu n. 01 dotion Contro tor, Wye or d s (A,/A,B,/B,) 1 programma quadrature e drive to maxi	able transform ncoder) mize feedbac	d (DC brush m ss/sec (20 Mcc nation ratio k < overvoltage = +20 Vdc	when output is active 5,200 Baud notor use outputs U & V) nunt/sec after quadrature) (for 180, 90, 55 Vdc models)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION F Signals Protocol Device 40TOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp RESOLVER Type Resolution Reference frequency Reference maximum of Maximum RPM PROTECTIONS HV Overvoltage HV Undervoltage Drive over tempera	C 1 P P RT R F F PORT C C D Q Q R H H M	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gno ull-duplex, se CANH, CANL, ANopen Appl SP-402 Devi Disp-402 Devi	x, +30 Vdc r with <i>CME 2</i> to either HI d erial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b iccoder, diffen L, S2, S4 (-R ,V,W) ature sensor s, single-sper equivalent to s, auto-adjus	max ™ (off, pull-up nication port : sec maximur r DS-301 V4. Drives and N prushless mole ential output: coption) or switch ed, 1:1 to 2: a 4096 line of table by the of Drive out Drive out Drive out Drive out	to +5 Vdc) of for drive setu n. 01 4otion Contro tor, Wye or do s (A,/A,B,/B,/ 1 programma quadrature e drive to maxi tputs turn off tputs turn off ches OFF unt	pr LO (on, cu p and contro ol elta connecte X,/X), 5 Mline able transform ncoder) mize feedbac until +HV is until +HV s il drive is res	rent-sinking) v I, 9,600 to 11 d (DC brush m ss/sec (20 Mco nation ratio k < overvoltage = +20 Vdc et, or powered	when output is active 5,200 Baud notor use outputs U & V) ount/sec after quadrature) (for 180, 90, 55 Vdc models)
Number Type Functions Active Level RS-232 COMMUNICATION PO Signals CANOPEN COMMUNICATION PO Signals Protocol Device 40TOR CONNECTIONS Motor U,V,W Encoder Resolver Halls Motemp Resolution Reference frequency Reference frequency Reference voltage Reference maximum of Maximum RPM PROTECTIONS HV Overvoltage HV Undervoltage	C 1 P P RT R F PORT C D Q Q Q R H M M H H H H H H H H H H H H H	Current-sinkin Adc sink ma rogrammable rogrammable xD, TxD, Gnu ull-duplex, se ANH, CANL, ANOpen Appl pSP-402 Devi prive outputs Duadrature er 1, R2, S3, S: Lall signals (U lotor tempera Brushless 14 bits (6 7.5 kHz 2.8 Vrms 100 mA 10,000+ -185, +91, +	x, +30 Vdc r with <i>CME 2</i> to either HI d erial commur Gnd. 1 Mbit/ ication Layer ce Profile for to 3-phase b iccoder, diffen L, S2, S4 (-R ,V,W) ature sensor s, single-sper equivalent to s, auto-adjus	max ™ (off, pull-up hication port : sec maximur r DS-301 V4. Drives and N prushless molential outputs or switch ed, 1:1 to 2: a 4096 line for table by the of Drive out Drive out Drive out Drive out Output to	to +5 Vdc) of for drive setu n. 01 dotion Contro tor, Wye or do s (A,/A,B,/B,) 1 programma quadrature e drive to maxi tputs turn off tputs turn off tputs turn off tobes OFF unt o output, out	pr LO (on, cui p and contro pl elta connecte X,/X), 5 Mline able transform ncoder) mize feedbac until +HV is i until +HV is i until +HV s	rent-sinking) v I, 9,600 to 11 d (DC brush m ss/sec (20 Mco nation ratio k < overvoltage = +20 Vdc et, or powered	when output is active 5,200 Baud notor use outputs U & V) punt/sec after quadrature) (for 180, 90, 55 Vdc models) I off-on M bridge faults

1. [IN1] is not programmable and always works as drive Enable. Other digital inputs are programmable.

Accelnet Module DIGITAL SERVO DRIVE for BRUSHLESS/BRUSH MOTORS ACM

MECHANICAL & ENVIRONMENTAL	
Size	4.05 in (102.7 mm) X 2.62 in (66.5 mm) X 0.92 in (24.9 mm)
Weight	5.7 oz (0.16 kg)
Ambient temperature	0 to +45°C operating, -40 to +85°C storage
Humidity	0 to 95%, non-condensing
Vibration	2 g peak, 10~500 Hz (sine), IEC60068-2-6
Shock Contaminants	10 g, 10 ms, half-sine pulse, IEC60068-2-27 Pollution degree 2
Environment	Fonducin degree 2 IEC68-2: 1990
Cooling	Heatsink required for continuous power output
AGENCY STANDARDS CONFORM	
EN 55011 : 1998	CISPR 11 (1997) Edition 2/Amendment 2:
	Limits and Methods of Measurement of Radio Disturbance Characteristics of Industrial, Scientific, and
	Medical (ISM) Radio Frequency Equipment
EN 61000-6-1 : 2001	Electromagnetic Compatibility Generic Immunity Requirements
	Following the provisions of EC Directive 89/336/EEC:
EN 60204-1 : 1997	Safety of Machinery - Electrical Equipment of Machines
	Following the provisions of EC Directive 98/37/EC:
UL 508C 3 rd Ed. : 2002	UL Standard for Safety for Power Conversion Equipment
RoHS	The ACM amplifier models are RoHS, the MDK-180-01 Development Kit is not RoHS

ACCELNET MODULE FEATURES

CANOPEN NETWORKING

Based on the CAN physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low-cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

CANOPEN COMMUNICATION

Accelnet uses the CAN physical layer signals CANH, CANL, and GND for connection, and CANopen protocol for communication.

Before connecting Accelnet to the CAN network, it must be assigned a CAN address. This is done via the RS-232 port, which is also used for general drive setup. The CAN address is a combination of an internal address stored in flash memory, and digital inputs which have been configured to act as CAN address bits. A maximum of 127 CAN devices are allowed on a CAN bus network, so this limits the input pins used for this purpose to a maximum of seven, leaving three inputs available for other purposes. Most installations will use less than the maximum number of CAN devices, in which case the number of inputs used for a CAN address can be less than seven, leaving more inputs available for other functions.

When inputs are used for the CAN address bits, the internal address is added to the binary value that results from the inputs. If all the inputs are used as logic inputs, then the CAN address in flash memory is the drive CAN address.

RS-232 COMMUNICATION

Accelnet is configured via a three-wire, full-duplex RS-232 port that operates from 9,600 to 115,200 Baud. CME 2[™] software provides a graphic user interface (GUI) to set up all of Accelnet features via a computer serial port.

The RS-232 port is used for drive set up and configuration. Once configured, Accelnet can be used in stand-alone mode taking digital position, velocity, or torgue commands from a controller, or as a networked drive on a CANopen bus.

REFERENCE INPUTS

PC BOARD MOUNTING

The small size, and cooling options enable Accelnet to be integrated into machinery with fewer cables and connections, and closer to the motor when required. Copley provides standard and low-profile heatsinks to match drive dissipation with ambient temperature and mounting conditions. In addition, the Accelnet case has tabs molded-in that accept Socket-A compatible chip-coolers (not available from Copley) which have integral fans to provide even greater cooling capacity.

As a network drive, the primary command input is the CANopen bus. But, Accelnet can also operate in stand-alone mode, taking position, velocity, or current (torque, force) commands in digital format or $\pm 10V$ from a motion controller.

DIGITAL REFERENCE INPUTS

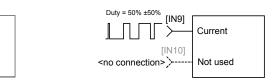
Two logic inputs are used as digital reference inputs in the stand-alone mode. These will be assigned automatically to inputs that have the HS filters.

Current (torque, force) mode commands can be in one or two-wire format. In the one-wire format (50% PWM), a single input takes a square waveform that has a 50% duty cycle when the drive output should be zero. Thereafter, increasing the duty cycle to 100% will command an output current that will produce a maximum force or torque in a positive direction of motion, and decreasing the duty cycle to 0% will produce a maximum negative torque or force output.

In two-wire format (PWM/Dir), one input takes a PWM waveform of fixed frequency and variable duty cycle, and the other input takes a DC level that controls the polarity of the output current. The active level of the PWM signal for 0 current output is programmable. The direction of the force or torque produced will depend on the polarity of the DC signal on the direction input.

PWM/DIR INPUTS

Duty = 0~100%

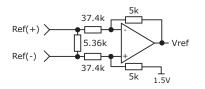

[IN9]

[IN10]

Current

Polarity

Tel: 781-828-8090

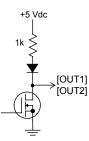


DIGITAL SERVO DRIVE Accelnet Module DIGITAL SERVO DRIVE for BRUSHLESS/BRUSH MOTORS ACM

(E

ANALOG COMMAND INPUT

RoHS models (green leaf on label) now feature an analog input for position/velocity/ torque control. When using this input, Ref(+) and Ref(-) must both be connected to the controller. This differential connection is important for two reasons. First, for rejection of noise between controller and drive grounds. Second, because if one Ref input is left open, grounding of the other input will produce a $\pm 2\%$ of peak-current command, not a 0% command.


DIGITAL OUTPUTS

The digital outputs [OUT1], and [OUT2] are open-drain MOSFETs with 1 kΩ pull-up resistors in series with a diode to +5 Vdc. They can sink up to 1 Adc from external loads operating from power supplies to +30 Vdc.

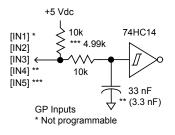
The outputs are typically configured as drive fault and motor brake. Additional functions are programmable.

As a drive fault output, the active level is programmable to be HI or LO when a drive fault occurs. As a brake output, it is programmable to be either HI or LO to release a motor brake when the drive is enabled.

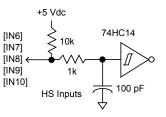
When driving inductive loads such as a relay, an external fly-back diode is required. A diode in the output is for driving PLC inputs that are opto-isolated and connected to +24 Vdc. The diode prevents conduction from +24 Vdc through the 1 k Ω resistor to +5 Vdc in the drive. This could turn the PLC input on, giving a false indication of the drive output state.

DIGITAL INPUTS

There are ten digital inputs to Accelnet, nine of which can be programmed to a selection of functions. The Enable input which controls the on/off state of the PWM outputs is fixed to [IN1] as a safety measure so that cannot be programmed in such a way that, once installed, it could not be shut down by the controller. The other nine inputs can be set to a selection of functions. Two types of RC filters are used: GP (General Purpose), and HS (High-Speed). Input functions such as Pulse/Direction, CW/CCW, Quad A/B typically are wired to inputs having the HS filters, and inputs with the GP filters are used for general purpose logic functions, limit switches, and the motor temperature sensor. Input [IN4] has a 33 µs RC filter.

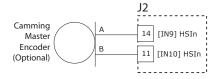

Programmable functions of the I/O inputs are:

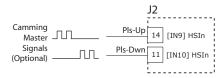
- Positive Limit switch
- Negative Limit switch
- Home switch
 - Drive Reset
 - PWM current or velocity control
 - CAN address
- Pls/Dir, or CW/CCW step motor control pulses
- Quad A/B master encoder position commands
- Motor temperature sensor or switch input
- Motion Profile Abort


In addition to the selection of functions, the active level for each input is individually programmable.

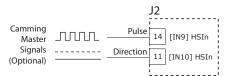
Drive reset takes place on transitions of the input and is programmable to 1/0 or 0/1. The motor temp sensor function will disable the drive if a switch in the motor opens or closes when the motor overheats.

GENERAL-PURPOSE INPUTS


HIGH-SPEED INPUTS


CAM MASTER

When operating in Camming mode an incremental encoder may be the Master input and connects to [IN9] and [IN10]. Other types of digital signals can used, too. Pulse & Direction or Pulse-Up/Pulse-Down formats are supported.

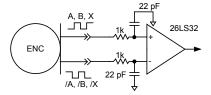

QUAD A/B ENCODER

PULSE-UP, PULSE-DOWN

PULSE-DIRECTION

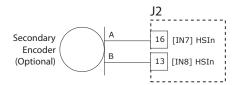
MOTOR CONNECTIONS

Motor connections are of three types: phase, Halls, and encoder. The phase connections carry the drive output currents that drive the motor to produce motion. The Hall signals are three digital signals that give absolute position feedback within an electrical commutation cycle. The encoder signals give incremental position feedback and are used for velocity and position modes, as well as sinusoidal commutation.

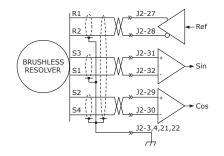


Accelnet Module DIGITAL SERVO DRIVE for BRUSHLESS/BRUSH MOTORS ACM

DIGITAL SERVO DRIVE


MOTOR ENCODER

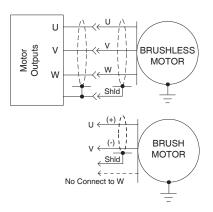
The motor encoder interface is a differential line-receiver with R-C filtering on the inputs. Encoders with differential outputs are preferred because they are less susceptible to noise that can be picked on single-ended outputs. PC board layouts should route the encoder signal-pairs as close to each other as possible for best transmission-line characteristics. If single-ended encoders are used, a pull-up resistor should be installed on the PC board, and the unused input can be left open. If this is done, it is recommended that the inverting input be left open as its' open-circuit voltage of 2.0 Vdc (typical) is closer to TTL and CMOS levels than the non-inverting input which has an open-circuit voltage of 2.9 Vdc (typical). The encoder input circuit is shown below.


SECONDARY ENCODER

A secondary incremental encoder can be connected to [IN7] and [IN8] for dual-loop position control. A typical use for this would be a gear-motor driving a leadscrew. An encoder on the leadscrew would give the position of the load while the motor encoder and Halls would be used for velocity control and commutation.

RESOLVER (-R MODELS)

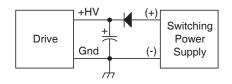
Connections to the resolver should be made with shielded cable that uses three twistedpairs. Once connected, resolver set up, motor phasing, and other commissioning adjustments are made with CME 2 software. There are no hardware adjustments.


MOTOR HALL SIGNALS

Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and in Accelnet they are used for commutation-initialization after startup, and for checking the motor phasing after the drive has switched to sinusoidal commutation.

MOTOR PHASE CONNECTIONS

The drive output is a three-phase PWM inverter that converts the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phasecoils. The peak voltage between adjacent etches on the PC board is equal to the +HV power, and peak and continuous currents will not be greater than the ratings of the particular drive model. A trace width of 0.175 in, plating thickness of 3 oz copper, and spacing of 0.25 in is adequate for all models of Accelnet.



POWER SUPPLIES

Accelnet operates typically from transformer isolated, unregulated DC power supplies. These should be sized such that the maximum output voltage under high-line and no-load conditions does not exceed the drives maximum voltage rating. Power supply rating depends on the power delivered to the load by the drive. In many cases, the continuous power output of the drive is considerably higher than the actual power required by an incremental motion application.

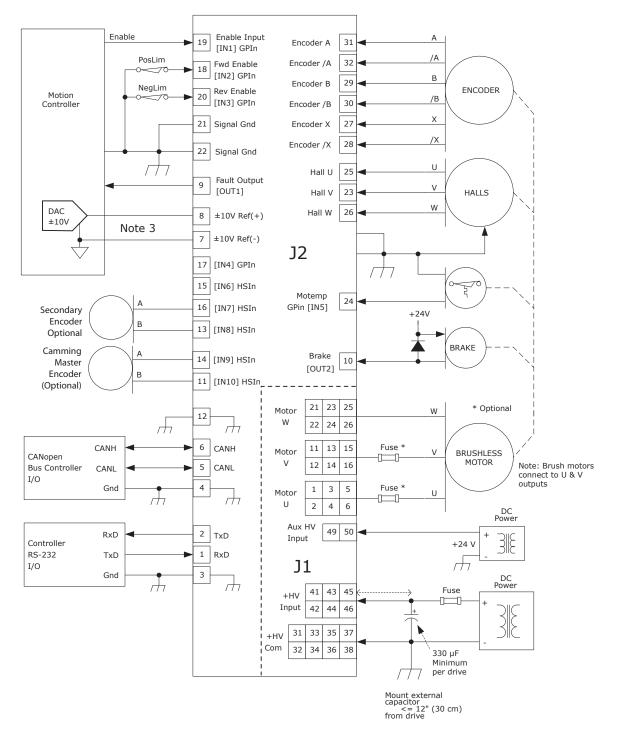
(E

Operation from regulated switching power supplies is possible if a diode is placed between the power supply and drive to prevent regenerative energy from reaching the output of the supply. If this is done, there must be external capacitance between the diode and drive. The minimum value required is 330 µF per drive.

AUX HV INPUT

Accelnet can continue to communicate on a CANopen network under EMO (EMergency Off) conditions if auxiliary DC power is connected to the Aux HV input. This powers the internal DC/DC converter so that motor position and drive communications are preserved while +HV is removed from the PWM inverter stage. The minimum voltage is +20 Vdc, and the maximum is the same as the drive maximum +HV rating. The current requirements will vary with voltage and can be calculated based on an average power consumption of 2.5 W.

MOUNTING AND COOLING


Accelnet mounts on PC boards using two, dual-row, 0.1 in female headers. These permit easy installation and removal of the drive without soldering. Threaded standoffs swaged into the PC board provide positive retention of the drive and permit mounting in any orientation. Cooling options are: no heatsink and convection heatsinks.

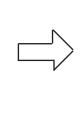
Convection heatsinks are available from Copley in standard, or low-profile forms.

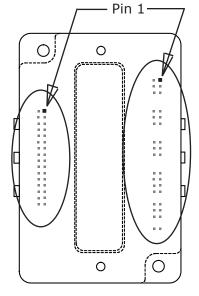
TYPICAL DRIVE CONNECTIONS

NOTES

- 1. [IN1] always functions as Drive Enable and is not programmable.
- [IN2]~[IN10] are programmable.
- 2. HS inputs [IN6,7,8,9,10] are for high-speed signals and have 100 ns RC filters. GP inputs [IN1,2,3,5] have 330 µs filters, [IN4] has a 33 µs filter.
- RC filter time constants apply when inputs are driven by active sources and do not include the 10 k Ω pull-up resistors.
- 3. Analog input only available on RoHS models (green leaf on label)

Accelnet Module DIGITAL SERVO DRIVE for BRUSHLESS/BRUSH MOTORS


Quad A/B



DRIVE PC BOARD CONNECTORS

Drive viewed from above looking down on the pc board on which it is mounted. Pins and housing shapes are shown in phantom view.

J2: Signal Dual row, 0.1" centers 32 position female header SAMTEC SSW-116-01-S-D

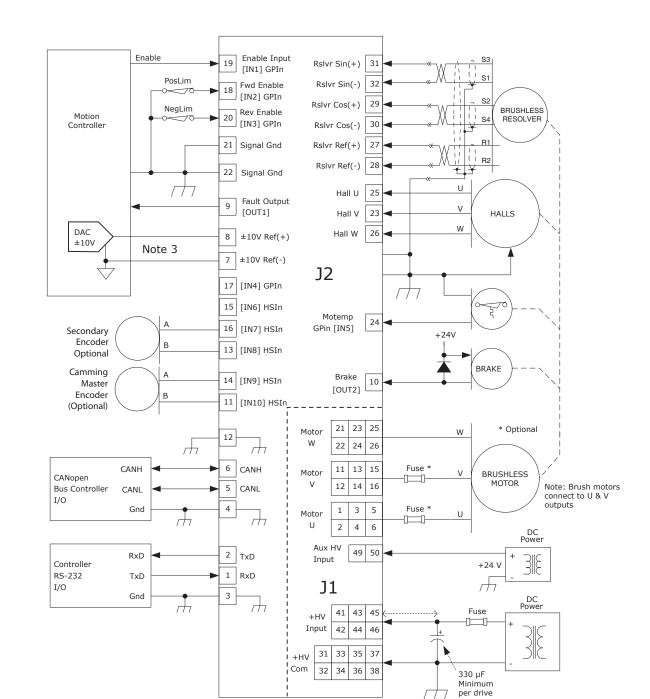
	Signal	J2	PIN	SIGNAL	
	RS-232 TxD	2	1	RS-232 RxD	
	Signal Ground	4	3	Signal Ground	
	CAN_H	6	5	CAN_L	
Note 2	±10V Ref(+)	8	7	±10V Ref(-)	Note 2
Note 2	Brake [OUT2]	10	9	[OUT1] Fault	Note 2
	Signal Ground	12	11	[IN10] HSInput	
	HSInput [IN9]	14	13	[IN8] HSInput	
	HSInput [IN7]	16	15	[IN6] HSInput	
	GPInput [IN2]	18	17	[IN4] HSInput	
	GPInput [IN3]	20	19	[IN1] HSInput	
	Signal Ground	22	21	Signal Ground	
	GPInput [IN5]	24	23	Hall V	
	Hall W	26	25	Hall U	
	Encoder /X	28	27	Encoder X	
	Encoder /B	30	29	Encoder B	
	Encoder /A	32	31	Encoder A	

NOTES

- 1. Signals are grouped for current-sharing on the power connector. When laying out pc board artworks, all pins in groups having the same signal name must be connected.
- 2. Analog input only available on RoHS models (green leaf on label)

J1: +HV, Aux HV, Gnd, & Motor Outputs Dual row, 0.1" centers Female header SAMTEC SSW-125-01-S-D

Signal	J1 Pin		Signal
	2	1	
Motor U	4	3	Motor U
	6	5	
No Connection	8	7	No Connection
No Connection	10	9	No Connection
	12	11	
Motor V	14	13	Motor V
	16	15	
No Connection	18	17	No Connection
	20	19	No Connection
Motor W	22	21	
	24	23	Motor W
	26	25	
No Osanostian	28	27	No. Ocranostica
No Connection	30	29	No Connection
	32	31	
HV COM	34	33	HV COM
(Ground)	36	35	(Ground)
	38	37	
No Connection	40	39	No Connection
	42	41	
+HV	44	43	+HV
	46	45	
No Connection	48	47	No Connection
Aux HV	50	49	Aux HV


Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: <u>www.copleycontrols.com</u>

TYPICAL DRIVE CONNECTIONS

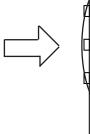
Resolver

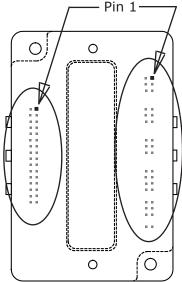
Mount external capacitor <= 12" (30 cm) from drive

NOTES

- 1. [IN1] always functions as Drive Enable and is not programmable.
- [IN2]~[IN10] are programmable.
- 2. HS inputs [IN6,7,8,9,10] are for high-speed signals and have 100 ns RC filters. GP inputs [IN1,2,3,5] have 330 μ s filters, [IN4] has a 33 μ s filter. RC filter time constants apply when inputs are driven by active sources and do not include the 10 k Ω pull-up resistors.
- 3. Analog input only available on RoHS models (green leaf on label)

Accelnet Module DIGITAL SERVO DRIVE for BRUSHLESS/BRUSH MOTORS


Resolver



DRIVE PC BOARD CONNECTORS

Drive viewed from above looking down on the pc board on which it is mounted. Pins and housing shapes are shown in phantom view.

J2: Signal Dual row, 0.1" centers 32 position female header SAMTEC SSW-116-01-S-D

Signal	J2 PIN		SIGNAL	
RS-232 TxD	2	1	RS-232 RxD	
Signal Ground	4	3	Signal Ground	
CAN_H	6	5	CAN_L	
Note 2 ±10V Ref(+)	8	7	±10V Ref(-) Note 2	
Brake [OUT2]	10	9	[OUT1] Fault	
Signal Ground	12	11	[IN10] HSInput	
HSInput [IN9]	14	13	[IN8] HSInput	
HSInput [IN7]	16	15	[IN6] HSInput	
GPInput [IN2]	18	17	[IN4] HSInput	
GPInput [IN3]	20	19	[IN1] HSInput	
Signal Ground	22	21	Signal Ground	
GPInput [IN5]	24	23	Hall V	
Hall W	26	25	Hall U	
Ref(-) Output R2	28	27	Ref(+) Output R1	
Cos(-) Input S4	30	29	Cos(+) Input S2	
Sin(-) Input S1	32	31	Sin(+) Input S3	

NOTES

- 1. Signals are grouped for current-sharing on the power connector. When laying out pc board artworks, all pins in groups having the same signal name must be connected.
- 2. Analog input only available on RoHS models (green leaf on label)

J1: +HV, Aux HV, Gnd, & Motor Outputs Dual row, 0.1" centers Female header SAMTEC SSW-125-01-S-D

Signal	J1 Pin		Signal
	2	1	
Motor U	4	3	Motor U
	6	5	
No Connection	8	7	No Connection
No Connection	10	9	No Connection
	12	11	
Motor V	14	13	Motor V
	16	15	
No Connection	18	17	No Connection
No Connection	20	19	No Connection
Motor W	22	21	
	24	23	Motor W
	26	25	
No Connection	28	27	No Connection
No Connection	30	29	No Connection
	32	31	
HV COM	34	33	HV COM
(Ground)	36	35	(Ground)
	38	37	
No Connection	40	39	No Connection
	42	41	
+HV	44	43	+HV
	46	45	
No Connection	48	47	No Connection
Aux HV	50	49	Aux HV

PC BOARD DESIGN

Printed circuit board layouts for *Accelnet* drives should follow some simple rules:

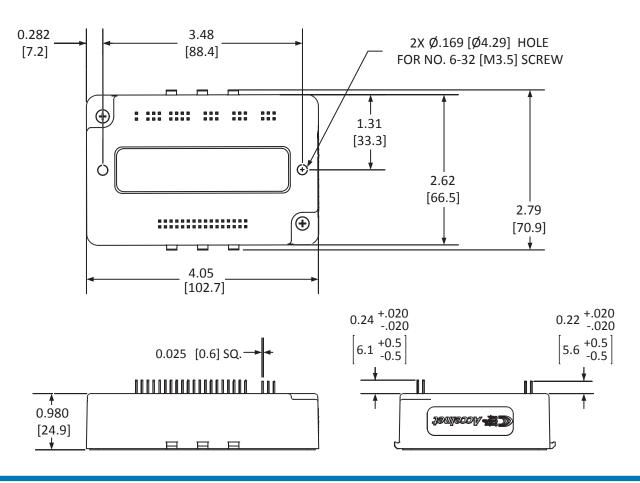
1. Install a low-ESR electrolytic capacitor not more than 12 inches from the drive. PWM drives produce ripple currents in their DC supply conductors. *Accelnet* drives do not use internal electrolytic capacitors as these can be easily supplied by the printed circuit board. In order to provide a good, lowimpedance path for these currents a low-ESR capacitor should be mounted as close to the drive as possible. 330 μ F is a minimum value, with a voltage rating appropriate to the drive model and power supply.

2. Connect J1 signals (U,V,W outputs, +HV, and +HV Common) in pin-groups for current-sharing. The signals on J1 are all high-current types (with the exception of the +24 Vdc Aux HV supply). To carry these high currents (up to 20 Adc peak) the pins of J1 must be used in multiples to divide the current and keep the current carrying capacity of the connectors within specification. The diagram on page 8 shows the pin groups that must be inter-connected to act as a single connection point for pc board traces.

3. Follow IPC-2221 rules for conductor thickness and minimum trace width of J1 signals. The width and plating should depend on the model of drive used, the maximum voltage, and maximum current expected to be used for that model. Power supply traces (+HV, +HV Common) should be routed close to each other to minimize the area of the loop enclosed by the drive DC power. Noise emission or effects on nearby circuitry are proportional to the area of this loop, so minimizing it is good layout practice.

Motor signals (U,V,W) should also be routed close together. All the motor currents sum

to zero, and while the instantaneous value in a given phase will change, the sum of currents will be zero. So, keeping these traces as closely placed as possible will again minimize noise radiation due to motor phase currents.

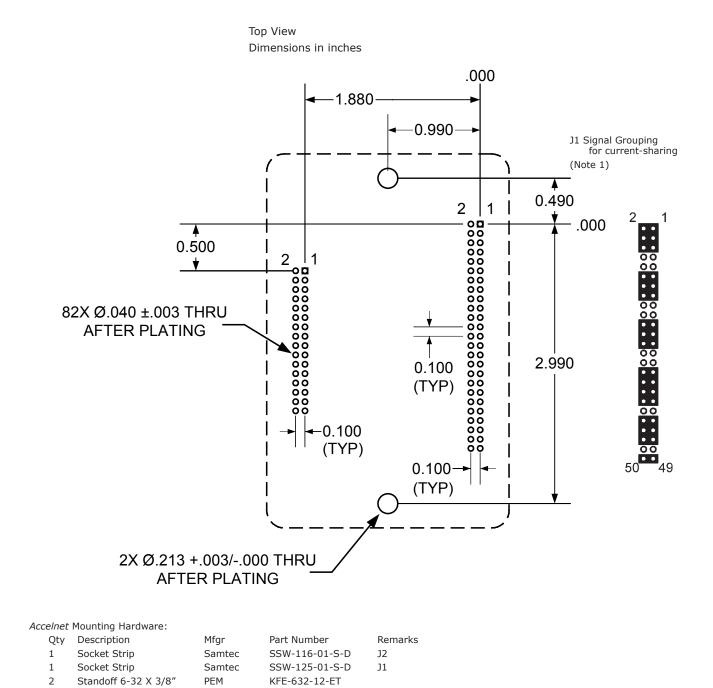

(E

Accelnet circuit grounds are electrically common, and connect internally. However, the J1 signals carry high currents while the grounds on J2 (signal ground) carry low currents. So, J2 signals should be routed away from, and never parallel to the signals on J1. Encoder signal pairs (A, /A, B, /B, and X, /X) should be routed close together for good transmission-line effect to reduce reflections and noise.

The drive heatplate is electrically isolated from all drive circuits. For best noiseimmunity it is recommended to connect the standoffs to frame ground and to use metal mounting screws to maintain continuity between heatplate and standoffs.

DIMENSIONS

Note: Dimensions shown in inches [mm].



DIGITAL SERVO DRIVE

PC BOARD MOUNTING FOOTPRINT

Notes

1. J1 signals must be connected for current-sharing.

2. To determine copper width and thickness for J1 signals refer to specification IPC-2221.

(Association Connecting Electronic Industries, http://www.ipc.org)

3. Standoffs should be connected to etches on pc board that connect to frame ground for maximum noise suppression and immunity.

DIGITAL SERVO DRIVE Accelnet Module DIGITAL SERVO DRIVE for BRUSHLESS/BRUSH MOTORS

DESCRIPTION

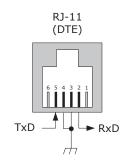
copley

controls

There two types of Development Kits:

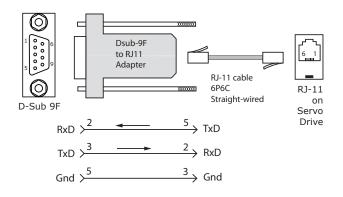
MDK-180-01 for models with current ratings of 9, 18, 20, & 24 Adc. RDK-090-01 for models with current ratings of 60 Adc.

The Development Kits provide mounting and connectivity for one ACM drive. Solderless jumpers ease configuration of inputs and outputs to support their programmable functions. Switches can be jumpered to connect to digital inputs so that these can be toggled to simulate equipment operation. LED's provide status indication for the digital outputs. Dual CANopen connectors make daisy-chain connections possible so that other CANopen devices can easily be connected.


RoHS

(E

RS-232 CONNECTION


The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an CANopen network. CME 2™ software communicates with the drive over this link and is used for complete drive setup. The CANopen node address that is set by the rotary switch can be monitored, and an address offset programmed as well.

The RS-232 connector, J9, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adaptor to interface this cable with a 9-pin RS-232 port on a computer.

SER-CK SERIAL CABLE KIT

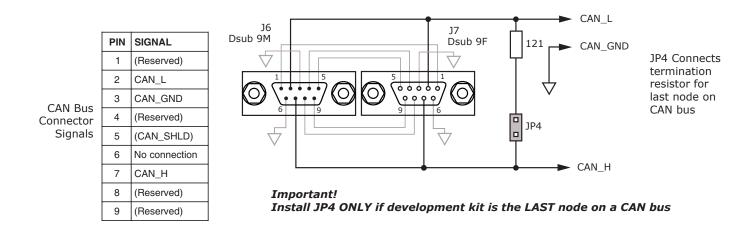
The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector J9 on the Development Kit. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the ACM. The connections are shown in the diagram below.

Don't forget to order a Serial Cable Kit SER-CK when placing your order for an AEM Development Kit!

or BRUSHLESS/BRUSH MOTORS

Development Kit

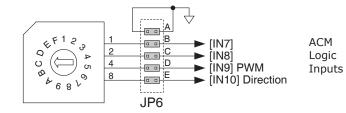
ACM


(E

CAN CONNECTORS

Connectors J6 & J7 are Sub-D male and female 9-position types that conform to the CAN DS-102 Physical Layer specification. The male-female configuration supports a single cable type with male and female connectors that can be daisy-chained from device to device along a CANopen network.

Accelnet uses only the CAN_H, CAN_L, and CAN_GND signals. The CAN_GND is connected to the circuit ground on the development kit. This ground is also shared by the amplifier power supply, accessory +5 Vdc (for encoders), and the RS-232 link. Other DS-102 signals are wired-through for use by products that might support them.


The table below lists the signals and pins on J6 & J7. Signals in () are those that have no connection on the development kit and which are connected pin-to-pin between J6 & J7.

CAN ADDRESS SELECTION

Rotary switch SW6, labeled "CAN ADDR" connects to logic inputs 7, 8, 9, and 10 of the ACM. These are programmable inputs which default to CAN address bits. The switch will select CAN addresses 0x00 through 0x0F (0~15 decimal). Address 0x00 is reserved for network management devices so amplifiers should use addresses 0x01~0x0F. The CAN standard permits up to 127 devices, so if the amplifier must have a address of 0x10 (decimal 16) or higher, this is done by programming an address offset into the amplifier before it is installed into the CAN bus. When this is done, the switch setting is added to the CAN offset in the amplifier to produce the actual CAN address.

CAN Address Switch

Note: To use inputs 7,8,9, or 10 as logic inputs remove jumpers on JP6. Connections can then be made via the pins on JP6. Inputs [IN9,10] are digital reference inputs

for use when amplifier is used in stand-alone mode.

Accelnet Module DIGITAL SERVO DRIVE for BRUSHLESS/BRUSH MOTORS

Development Kit

ENCODER CONNECTIONS

The development kit has 10 k Ω pull-up resistors on the A,B, and X encoder signal inputs (J2-8, 7, 6). There are no pull-up resistors on the /A, /B, and /X inputs (J2-15,14,13). Jumpers JP1-A,B,C connect 121 Ω terminating resistors between the A-/A, B-/B, and X-/X signal pairs for use with differential-output encoders.

If single-ended encoders are used, these should be connected to the A,B, & X inputs and jumpers JP1-A,B, C must be removed to take the terminating resistors out of circuit. For motors which use encoders with differential outputs, jumpers JP1-A,B,C should be installed to eliminate reflections that degrade signal quality. For longer distances between motor and amplifier, and to offset the effects of cable capacitance, wiring should be twisted-pair, preferably with a shield for each pair.

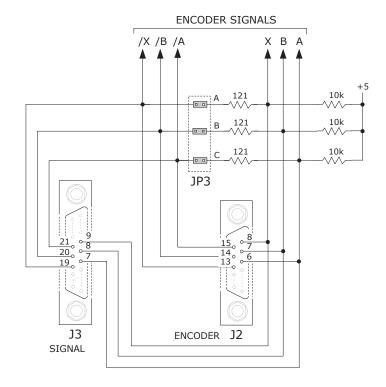
Encoder power is supplied from an external +5 Vdc supply with sufficient current to drive the motor encoder. Typically these will be 250 mA or less. In cases where an encoder uses a separate interpolater module to process the data, current demand may be higher. Consult the motor encoder literature to be sure that the +5 Vdc supply can handle the encoder power requirements.

POWER SUPPLIES

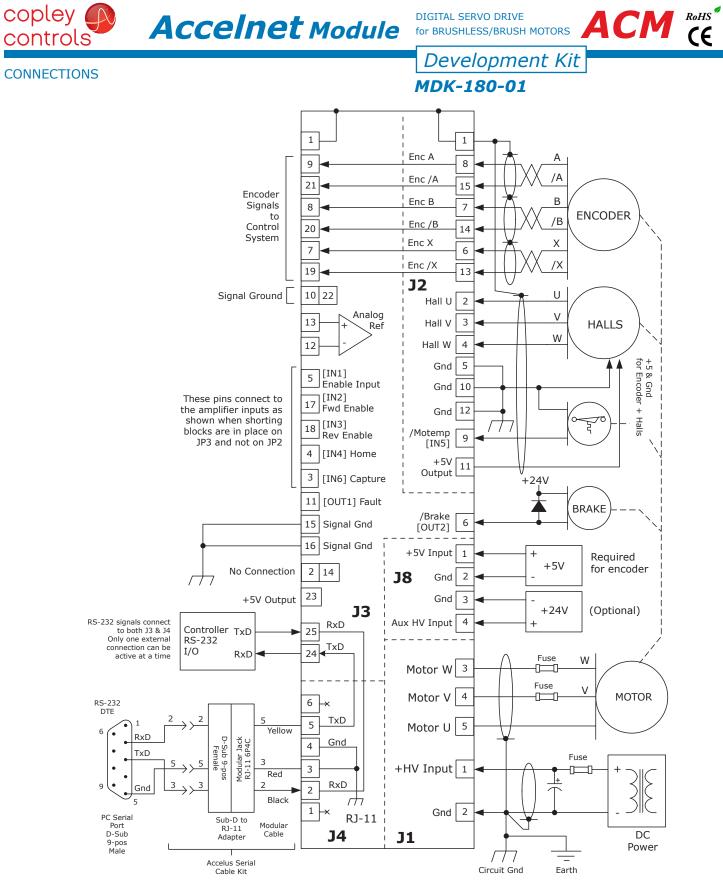
Amplifier main power, +HV, is typically supplied by unregulated DC power supplies. These must be isolated from the mains, and all circuits should be grounded to earth at some point.

The +HV supply connects to J1. Pin J1-5 is the +HV positive terminal, and pin J1-4 is the power supply negative terminal that connects to circuit ground. For good wiring practice, the HV wires should be twisted together for noise suppression, and the power supply should not be grounded. Doing this ensures that the higher currents flowing in these conductors will not flow through any circuit grounds where they might induce noise.

During deceleration, mechanical energy in the motor and load is converted back into electrical energy that must be dissipated as the motor comes to a stop. While some of this is converted to heat in the motor windings, the rest of it will flow through the amplifier into the power supply. An external storage capacitor should be used if the load has appreciable inertia, and this should be sized such that adding the undissipated energy from the motor will not raise the voltage beyond the point at which the amplifier shuts down. When this is not possible, an external 'dumper', or regenerative energy dissipater must be used which acts as a shunt regulator across the HV terminals.


ACM

(E


Switching power supplies can also be used to power *Accelnet*. Unlike unregulated supplies, these cannot accept reverse energy flow, so an isolating diode must be placed between the power supply and J1-5 to block current flow back into the power supply. When this is done, an external storage capacitor must be used across J1-5 & J1-4 because the capacitor on the Development Kit board is only for ripplecurrent control, and can't store enough energy to handle regeneration.

An earthing ground connection can be made via a second conductor to J1-4 that connects to the equipment frame ground.

If desired, an Aux HV supply can also be connected via J8-1 and J8-2. This supply must be greater than the amplifier minimum supply voltage of +20 Vdc. Commonly available +24 Vdc supplies work well for this. Using the Aux HV input enables the amplifier to have the HV supply turned off for equipment safety or EMO (Emergency Off) conditions. At this time, the Aux HV will keep the amplifier 'alive' and able to communicate and monitor position, but not to power the motor.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: <u>www.copleycontrols.com</u>

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

Web: www.copleycontrols.com

CONNECTOR LAYOUT

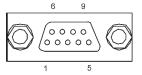
copley (

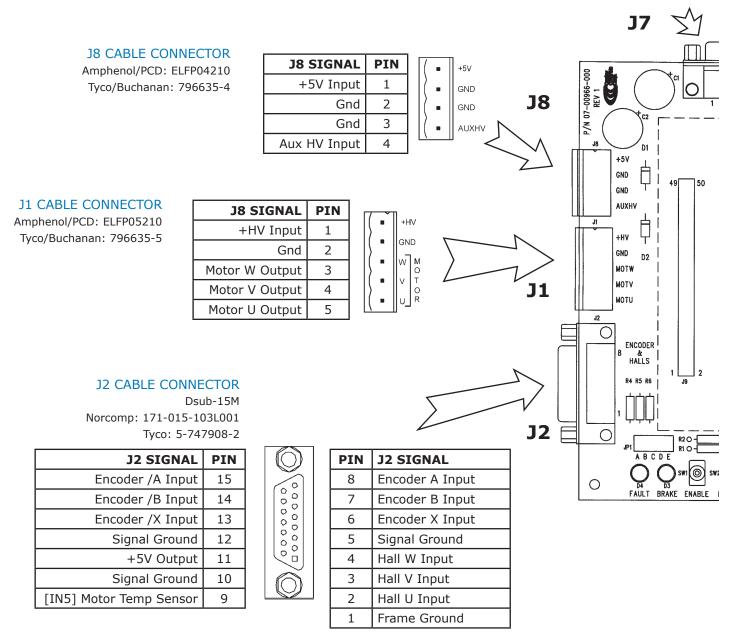
controls

FOR THE MDK-180-01 DEVELOPMENT KIT

Model *	Vdc	Ic	Ip
ACM-055-18	20 - 55	6	18
ACM-090-09	20 - 90	3	9
ACM-090-24	20 - 90	12	24
ACM-180-09	20 - 180	3	9
ACM-180-18	20 - 180	6	18
ACM-180-20	20 - 180	10	20

Add -R to the part numbers above for resolver feedback


Development Kit

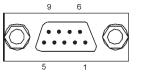

MDK-180-01

J6-J7 SIGNAL	PIN
(Reserved)	1
CAN_L	2
CAN_GND	3
(Reserved)	4
(CAN_SHLD)	5

J7 CABLE CONNECTOR

Dsub-9F Norcomp: 171-009-203L001 Tyco: 5-747905-2

Accelnet Module DIGITAL SERVO DRIVE for BRUSHLESS/BRUSH MOTORS


DIGITAL SERVO DRIVE

Development Kit MDK-180-01

PIN	J6-J7 SIGNAL
6	CAN_GND
7	CAN_H
8	(Reserved)
9	(CAN_V+)

1. Connector pinouts for J6 & J7 follow CAN standard DS-102. 2. Signals in () are wired-through from J7 to

- J6 and have no other connections on the pc board.
- 3. CAN_GND is connected to Gnd on pc board (Accelnet signal and power ground)

J6 CABLE CONNECTOR Dsub-9M

Norcomp: 171-009-103L001 Tyco: 5-747904-2

J5

]4

PIN	J5 SIGNAL
1	Fan -V
2	Fan +V
3	F

CANopen Notes:

J5 CABLE CONNECTOR

Amphenol/PCD: ELFP03210 Tyco/Buchanan: 796635-3

PIN	J4 SIGNAL
6	No Connection
5	TxD Output
4	Ground
3	Ground
2	RxD Input
1	No Connection

(

1

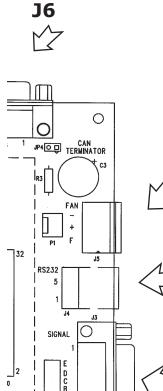
13

J3 CABLE CONNECTOR

Dsub-25M Norcomp: 171-025-103L001 Tyco: 5-747912-2

RoHS

Œ


ACM

	J3 SIGNAL	PIN
,	Chassis Ground	1
(N.C.	2
1	Capture [IN6]	3
J3	Home [IN4]	4
	Enable Input [IN1]	5
	Fault Output [OUT1]	6
	Encoder X Output	7
	Encoder B Output	8
	Encoder A Output	9
	Signal Ground	10
	Brake Output [OUT2]	11
	±10V Ref(-)	12
	±10V Ref(+)	13

FAN -V

FAN +V

		PIN	J3 SIGNAL
\bigcirc	ר	14	N.C.
		15	Signal Ground
	14	16	Signal Ground
00		17	[IN2] Forward Enable Input
		18	[IN3] Reverse Enable Input
0000		19	Encoder /X Output
		20	Encoder /B Output
		21	Encoder /A Output
000	25	22	Signal Ground
		23	+5V Output
\bigcirc		24	RS-232 TxD Output
	_	25	RS-232 RxD Input

DCB

13 \bigcirc

S/N

JP3 R7 R8 R9

] -HI

Ε

Ĵ -L0

CAN ADDR

copley controls	Accel	net	Mod	ule	DIGITAL SERVO DRI for BRUSHLESS/BRU	VE JSH MOTORS	
					Developn	nent Kit	
CONNECTOR LAYOUT					RDK-090-0	1	_
						J6-3	J7 SIGNAL PIN
FOR THE RDK-0	90-01 DEVELOP		г				(Reserved) 1
Model *	Vdc	Ic	Ip				CAN_L 2
ACM-090-60	20 - 90	30	60				CAN_GND 3
							(Reserved) 4
Add -R to the part	number above for	resolver fe	eedback			((CAN_SHLD) 5
				J7	CABLE CONNECT		6 9
					Dsul		
				Norco	mp: 171-009-203L Tyco: 5-74790		
					1900. 5 74750	55 2	
							J7 📈
J8 CABLE	CONNECTOR	J8 S	IGNAL	PIN			
	CD: ELFP04210	+5\	/ Input	1	+5V		l ⊂ Åå L
Tyco/Bucha	anan: 796635-4		Gnd	2		J8	+5V
			Gnd	3			GND C2
		Aux H	/ Input	4			AUXHV
						\geq	
							49 🔲
J1 CABLE CONNECTO Phoenix PC 5/5-STCL-7,			PIN				
	+H	V Input	1			7	+HV E P E GND E
	Motor W	Gnd	2		1	7/	MOTW J9
	Motor V		4			L .	MOTV a
	Motor U	· · ·	5			J1	MOTU E
		oucput					моту с моту с моту с с с с с с с с с с с с с с с с с с с
	E CONNECTOR						ENCODER & HALLS
JZ CADL	E CONNECTOR Dsub-15M					-/	
Norcomp: 1	L71-015-103L001					·	
-	Гусо: 5-747908-2					J2 [
J2	SIGNAL PIN	1 🔘	PIN	N J2 S	IGNAL]	
	/A Input 15	15 0 0	8 8		der A Input		
Encoder	/B Input 14		7		der B Input		STATUS BRAKE ENABLE FI
Encoder	/X Input 13		6	_	der X Input		
Signa	I Ground 12		5		al Ground		
	V Output 11				W Input		
	I Ground 10		3		V Input		
[IN5] Motor Tem	p Sensor 9		2		U Input sis Ground		
			1			l	

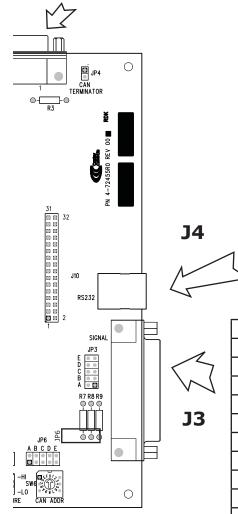
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Web: <u>www.copleycontrols.com</u>

RoHS

Œ

Development Kit RDK-090-01

PIN	J6-J7 SIGNAL
6	CAN_GND
7	CAN_H
8	(Reserved)
9	(CAN_V+)


9

J6

CANopen Notes:

- 1. Connector pinouts for J6 & J7 follow CAN standard DS-102.
- 2. Signals in () are wired-through from J7 to J6 and have no other connections on the pc board.
- 3. CAN_GND is connected to Gnd on pc board (Accelnet signal and power ground)

2	

J3 SIGNAL

Ref(+)

Chassis Ground

Capture [IN6]

Enable Input [IN1]

Encoder X Output Encoder B Output

Encoder A Output

Brake Output [OUT2]

Signal Ground

±10V Ref(-)

±10V Ref(+)

Fault Output [OUT1]

Home [IN4]

PIN

1

2

3

4

5

6 7

8

9

10

11

12

13

PIN	J4 SIGNAL
6	No Connection
5	TxD Output
4	Ground
3	Ground
2	RxD Input
1	No Connection

000000000000000

0 ٥ 25

13

0000000000

00

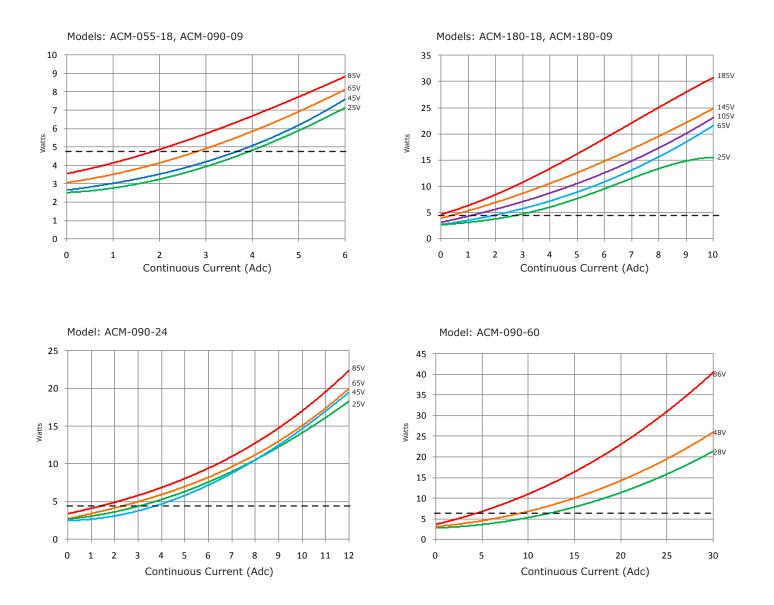
14

1

J3 CABLE CONNECTOR Dsub-25M

Norcomp: 171-025-103L001 Tyco: 5-747912-2

PIN	J3 SIGNAL
14	Ref(-)
15	Signal Ground
16	Signal Ground
17	[IN2] Forward Enable Input
18	[IN3] Reverse Enable Input
19	Encoder /X Output
20	Encoder /B Output
21	Encoder /A Output
22	Signal Ground
23	+5V Output
24	RS-232 TxD Output
25	RS-232 RxD Input


POWER DISSIPATION

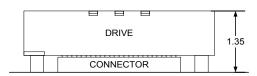
copley

controls

The charts on this page show the drive's internal power dissipation for different models under differing power supply and output current conditions. Drive output current is calculated from the motion profile, motor, and load conditions. The values on the chart represent the RMS (root-mean-square) current that the drive would provide during operation. The +HV values are for the average DC voltage of the drive power supply.

To see if a heatsink is required or not, the next step is to determine the temperature rise the drive will experience when it's installed. For example, if the ambient temperature in the drive enclosure is 40 °C, and the heatplate temperature is to be limited to 70° C or less to avoid shutdown, the maximum rise would be 70C - 40C. or 30° C. Dividing this dissipation by the thermal resistance of 6.2° C/W with no heatsink gives a dissipation of 4.8W. This line is shown in the charts below. For power dissipation below this line, no heatsink is required.

using recommended connectors and standoffs (see page 9)

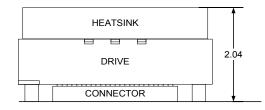


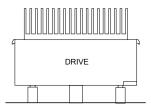
copley

controls

Rth expresses the rise in temperature of the drive per Watt of internal power loss. The units of Rth are °C/W, where the °C represent the rise above ambient in degrees Celsius. The data below show thermal resistances under convection, or fan-cooled conditions for the no-heatsink, HL, and HS heatsinks, and for the chip-cooler with integral fan.

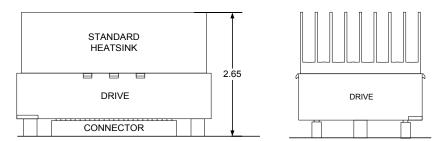
NO HEATSINK


Dimensions in inches


NO HEATSINK	°C/W
CONVECTION	6.2
FORCE AIR (300 LFM)	2.1

RoHS

(E


LOW-PROFILE HEATSINK (ACM-HL)

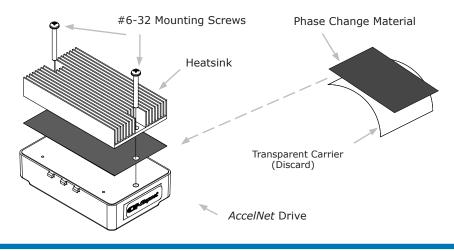
ACM-HL HEATSINK	°C/W
CONVECTION	4.0
FORCE AIR (300 LFM)	0.9

STANDARD HEATSINK (ACM-HS)

ACM-HS HEATSINK	°C/W
CONVECTION	2.2
FORCE AIR (300 LFM)	0.5

HEATSINK INSTALLATION

If a heatsink is used it is mounted using the same type of screws used to mount the drive without a heatsink but slightly longer. Phase change material (PSM) is used in place of thermal grease. This material comes in sheet form and changes from solid to liquid form as the drive warms up. This forms an excellent thermal path from drive heatplate to heatsink for optimum heat transfer.


STEPS TO INSTALL

1. Remove the PSM (Phase Change Material) from the clear plastic carrier.

2. Place the PSM on the *Accelnet* aluminum heatplate taking care to center the PSM holes over the holes in the drive body.

3. Mount the heatsink onto the PSM again taking care to see that the holes in the heatsink, PSM, and drive all line up.

4. Torque the #6-32 mounting screws to $8 \sim 10$ lb-in (0.9 ~ 1.13 N·m).

ORDERING GUIDE

PART NUMBER	DESCRIPTION
ACM-055-18	Accelnet servo drive 6/18 Adc @ 55 Vdc
ACM-090-09	Accelnet servo drive 3/9 Adc @ 90 Vdc
ACM-090-24	Accelnet servo drive 12/24 Adc @ 90 Vdc
ACM-090-60	Accelnet servo drive 30/60 Adc @ 90 Vdc
ACM-180-09	Accelnet servo drive 3/9 Adc @ 180 Vdc
ACM-180-18	Accelnet servo drive 6/18 Adc @ 180 Vdc
ACM-180-20	Accelnet servo drive 10/20 Adc @ 180 Vdc
MDK-180-01*	Development Kit for -09, -18-, -20, & -24 models
RDK-090-01	Development Kit for -60 model
MDK-CK	Development Kit Connector Kit for MDK-180-01
RDK-CK	Development Kit Connector Kit for RDK-090-01
ACM-HL	Accelnet Heatsink Kit, Low profile
ACM-HS	Accelnet Heatsink Kit, Standard
SER-CK	Serial Cable Kit for Development Kit

Add -R to part numbers above for resolver feedback

* The ACM drives are RoHS.

The MDK-180-01 Development Kit is not RoHS

ORDERING INSTRUCTIONS

Example: Order 1 ACM-090-09 drive with Standard Heatsink, Development Kit, and

D	evelopment Kit	Connector Kit
Qty	Item	Remarks
1 1	ACM-090-09 ACM-HS	Accelnet servo drive Standard Heatsink
1	MDK-180-01	Accelnet Development Kit
1	MDK-CK	Connector Kit for Development
1	CME2	CME2™ CD
1	SER-CK	Serial Cable Kit

NOTES

1. Heatsink kits are ordered separately and installed by the customer, not at the factory.

Kit

RoHS COMPLIANCE

	ley trois	Model No: ACM-055-18 Serial # 12345678 Made in U.S.A.						
Volts Input Amps				os	Volts Output Amps			
20-55		20		pk.	55 max.	6	cont.	18 🞞 pk.

Note: Specifications are subject to change without notice

Rev 21.00-fr 1/13/2017

Fax: 781-828-6547 Page 22 of 22

ACM models with the green leaf symbol on the label are RoHS compliant and have a ± 10 Vdc analog input. The MDK-180-01 Development Kit is not RoHS